
HAM I LTON T RU S T S UMMER I N T E RN SH I P P ROGRAMME
Tr i n i t y Co l l e ge Dub l i n - S choo l o f Mathemat i c s

Interactively Prototyping Properties of Rigid
Bodies for Physically-based Animation
Nicholas Pochinkov1 | supervised by JohnDingliana2

1Trinity College Dublin, Dublin, Ireland
2School of Computer Science & Statistics,
Trinity College Dublin, Dublin, Ireland

Correspondence
http://pesvut.netsoc.ie
Email: pochinkn@gmail.com

Funding information
No funding was received for the duration of
this internship

The aim of the research project was to produce an interac-
tive tool that can compute various physical aspects of a body,
with a focus on computing and manipulating the tensor of
inertia of a complex rigid body. Themethods of interaction
include pulling the object on a string attached to themouse,
and "poking" the object by clicking on it. One can easily
change the size andmass of the object, swap between the
approximate and true tensor of inertia, as well as the forces
being applied on it. The tool was created successfully and
will hopefully aid people to better understand the Tensor of
Inertia.
K E YWORD S
processing, rigid-bodies, simulations, physics, rotation, education

1 | INTRODUCTION

The ultimate aim of the research project was to produce an interactive tool that can compute various physical aspects of
a body, with a focus on computing andmanipulating the tensor of inertia of a complex rigid body. This can be used to
teach people about the tensors of inertia, and to advance physics simulation inmodern live graphical simulations such
as the growing video game and VR industry. To code this, I used the “Processing” programming language development
environment, a language favoured for its ease of use for producing graphical outputs and similarity to c, leading to a
shorter time to get up and running.

1

2 NICHOLAS POCHINKOV

2 | BACKGROUND
2.1 | Numerical Integration
Many aspects of this program require the solving of differential equations of the form Ûx = f(x, t), with x denoting
some vector, f denoting a vector field and t denoting time. If we assumewe have an initial starting point and away of
calculating f(x, t). We get to the twomainmethods wewill be using:

2.1.1 | Euler’sMethod
Herewe get theMcLauren expansion of x(t0 + ∆t) :

x(t0 + ∆t) = x(t0) + x′(t0)∆t + x
′′(t0)∆t

2

2! +
x′′′(t0)∆t 3

3! + . . . (1)

For the Euler method, we assume that the second order derivative and those after are negligible. This gives
x(t0 + ∆t) = x(t0) + x′(t0)∆t . However, we know that x′(t) = f(x, t). Thus, we get that :

x(t0 + ∆t) = x(t0) + f(x, t)∆t (2)

This means that we canmake a function that gives us x(t0 + ∆t) from any starting point x(t0), the linear slope at that
point f(x, t), and the time interval over which we are integrating, ∆t . This gives us an error of O(n2) inaccuracy (i.e.
addingmore points makes reduces the error proportional to the number of points squared)

2.1.2 | Midpoint method
However, we can also improve the rate of convergence of the from O(n2) to O(n3) (or potentially even higher, though
this would require evenmore calculations per step). Wework again with theMcLauren expansion above but this time
include the second derivative, and try to find x”. Here wemust assume dx

d t
= f(x(t))with f independent of t (or at least

the dependence is negligible). (for simplicity the equation will be written as Ûx = f(x)). This leads us to get:

Üx =
δf(x)
δt

=
δf(x)
δx ·

δx
δt

= f′ · f (3)

To find this we now look at the expansion of f(x0 + ∆x) = f(x0) + f′(x0)∆x + O(n2).
If we do the substitution∆x = f(x0)∆t

2 ,
Thus we get that: f(x0 + f(x0)∆t

2) = f(x0) + f′(x0)f(x0)∆t2 + O(n2).
Substituting the above, we get that f(x0 + f(x0)∆t

2) = Üx∆t2 + O(n2)

And if wemultiply each term by∆t and rearrange, we get f(x0 + f(x0)∆t
2)∆t − f(x0)∆t = Üx∆t2 + O(n3)

We substitute this into x(t0 + ∆t) = x(t0) + x′(t0)∆t + x′′(t0)∆t 2
2! + O(n3)

And this leaves us with:

x(t0 + ∆t) = x(t0) + f(x0 + f(x0)∆t
2
)∆t (4)

NICHOLAS POCHINKOV 3

2.2 | Rigid-bodyDynamics
The rigid bodies have different properties that we needwhen displaying and accuratelymoving them in response to
stimuli. Themain thing we need are:

• Themass of the object
• The current position (of the center of mass)
• The current velocity
• The Tensor of Inertia of the object (equivalent tomass for rotation)
• The current orientation of the object
• The angular velocity of the object (how the orientation is changing)
• A representation of the shape of the object (basically a list of points and connections)

These however can be seen from both the body-space and from theworld-space of the object which I will explain
first

2.2.1 | Body-Space vsWorld-Space
Body space refers to the object being in a default orientationwith the object being centered at the origin. We always
keep a copy of the object in its body space to avoid any compounding errors slowly deforming the object, and it makes it
easier to perform certain operations such as rotation.

The world space represents it’s actual physical representation in the 3Dworld we havemade up, with each of the
points being where wewould want them to be in the physical world. This is correctly oriented and rotated as described
with the above properties.

ht t ps ://y a−webdesi gn .com/expl or e/cl i p−space−ver t ex−shader /

2.2.2 | Linear Properties
For our purposes, we will be assuming that mass of the object does not change, thus Force is the product of mass
times acceleration F = ma or alternatively, Üx = F

m . Of course, theODE solutions discussed before were for first-order
differential-equations, so we split this up into Ûx = v and Ûv = F

m
. Thus given an initial position and velocity (for example,

0) and a force at each step, we can use Euler’s method to integrate v with respect to F/m, and integrate the position with
respect to the slightly changed v.

4 NICHOLAS POCHINKOV

2.2.3 | RotationMatrix
We also need to orientate the object. As we know from mechanics, it is not possible to
parametrize the orientation of a 3D object with 3 values as the rotations of the object do not
commute. Instead wemust use either a RotationMatrix or a Quaternion to rotate the body.
Because of my higher familiarity with Linear Algebra, wewill be using the RotationMatrix.

R =
©«
x ′x y ′x z ′x

x ′y y ′y z ′y

x ′z y ′z z ′z

ª®®®¬which shows us rotated x’-y’-z’ in terms of standard x-y-z
This leads us on the problem of how to find the rotationmatrix, which wewill solve by

initially beginning with some R (lets say I3) and then integrating it with the angular velocity
vectorω. We notice that the angular velocity gives us the linear velocity through v = r × ω,
where r is the position vector (the same as x before but different for ease of distinction). Thus,
given a starting vector x̂ ,ŷ or ẑ we can get the new x̂ ′,ŷ ′ or ẑ ′ using the fact that d x̂

d t
= x̂ ×ω, d ŷ

d t
= x̂ ×ω and d ẑ

d t
= x̂ ×ω

Thus ÛR =
©«ω ×

©«
xx

xy

xz

ª®®®¬ ω ×
©«
yx

yy

yz

ª®®®¬ ω ×
©«
zx

zy

zz

ª®®®¬
ª®®®¬

However, it is also possible to describe the cross product of a vector(the "ω×" part) as it’s ownmatrix:

ω =
©«
0 −ωz +ωy

+ωz 0 −ωx

−ωy +ωx 0

ª®®®¬
Thus, using this, we can find the derivative of the rotationmatrix to be:

ÛR =
©«
0 −ωz +ωy

+ωz 0 −ωx

−ωy +ωx 0

ª®®®¬
©«
x ′x y ′x z ′x

x ′y y ′y z ′y

x ′z y ′z z ′z

ª®®®¬ (5)

which wemeans we can integrate R using the angular velocity to find the new rotationmatrix after a period of time.
However because we are doing this many times over many steps, the rotationmatrix can become slightly skewed over
time and scale up and thus wewould need to return it back to an ortho-normal matrix. As this is a 3x3matrix, we can
easily do this using Grahm-Shmidt orthogonalization. Given x0, x1 and x2, to find orthogonalw0,w1 andw2 we do:

w0 = x0, w1 = x1 −
x1 ·w0
w0 ·w0

w0, w2 = x2 −
x2 ·w0
w0 ·w0

w0 −
x2 ·w1
w1 ·w1

w1, t hen wi =
wi
|wi |

(6)

Doing this after every integration stops deforming of our shapes as it goes from body space to world-space.

2.2.4 | Translation BetweenWorld and Body Spaces
Now that we have the position of the Center ofMass and rotational orientation of the body, by Chasles’ Theorem, we
have enough information to translate the body from body-space to world-space. To do this, we consider each of the
points of the shape (stored in the PShape class). We take the PVector showing position of the point andmultiply it by
R to give the rotated position (xr ot at ed = R · x). We then take this new point and add the position vector to get the
world-space position (xwor l d = xr ot at ed + r). We then store this in a new PShape containing all the rotated points.

NICHOLAS POCHINKOV 5

2.2.5 | Application of Forces

Of course, wewant the object to respond to forces as they act on them. We have already seen how forces affect linear
properties of the rigid-body. Wewill now look at how this affects the rotational aspects of the body. To calculate these,
we of course need to look at the Tensor of Inertia, Ĩ for a bodymade of many point pieces of massmi with positions xi ,
yi , zi which is calculated as follows:

Ĩ =
©«
∑
i mi (y

2
i
+ z 2

i
) −

∑
i mi xi yi −

∑
i mi xi zi

−
∑
i mi yi xi

∑
i mi (x

2
i
+ z 2

i
) −

∑
i mi yi zi

−
∑
i mi zi xi −

∑
i mi zi yi

∑
i mi (x

2
i
+ y 2

i
)

ª®®®¬ (7)

This can be integrated accurately, but for the current discussion, we can use an approximate Tensor of inertia for a
uniform cuboid of size a, b, c andmassm, which is the size of the bounding box of the shape. This is given by:

I =
©«
1
12m(b

2 + c2) 0 0

0 1
12m(a

2 + c2) 0

0 0 1
12m(a

2 + b2)

ª®®®¬ (8)

We recall frommechanics that the AngularMomentum (L) of an object is givenmy it’s tensor of inertia multiplied
by it’s angular velocity: L = Ĩ ω. If we take the derivative of this with respect to time, assuming the Tensor of inertia
remains unchanged, we get: dL

d t
= Ĩ

dω

d t
. However, we already know that Torque τ = dL

d t
= (r × f). Thus, we canmultiply

both sides of the equation by the inversematrix of the Tensor of Inertia (I −1) to get:
dω

d t
= Ĩ −1(r × f) (9)

With this, given the location of the force relative to the center of mass and the force vector we have a formula for
the angular acceleration, which can be used to integrate angular velocity, which can be used to integrate the rotation
matrix. For our purposes, wewill translate r and f from the world-space to the body space by doing the reverse of what
was done before: subtract the position of the Center ofMass, andmultiply the resulting vector by the inverse of the
rotationmatrix.

2.3 | Integrating to find the Tensor of Inertia

Themethod for finding the tensor of inertia was detailed in "Fast and accurate computation of polyhedral mass proper-
ties" by BrianMirtich. [3] Themethod of integration described involves projecting the 3-Dimensional integrals in 3D
space into 2-Dimensional integrals in 3DSpace using theDivergence Theorem, then projecting these into 2-Dimensional
integrals in 2D Space using Theorem 2, and then projecting these integrals into 1-Dimensional integrals in 2D Space,

6 NICHOLAS POCHINKOV

whichmakes the computation far easier to compute. The integrals that require evaluation are as follows:

T1 =

∫
V

1dV Tx =

∫
V

xdV Tx2 =

∫
V

x2dV Tx y =

∫
V

x ydV

Ty =

∫
V

ydV Ty2 =

∫
V

y 2dV Txz =

∫
V

xzdV

Tz =

∫
V

zdV Tz2 =

∫
V

z 2dV Ty z =

∫
V

y zdV

These equations were integrated by themethod described in the paper (which I will not repeat but it is worth a read if
youwish to understand it better), but I will give a quick statement of the Thoerems used:

Divergence Theorem

V - region in space∫
V

+ · FdV =

∫
∂V
F · n̂dA ∂V - boundary ofV

n̂ - exterior normal
F - any Vector Field

Projection Theorem

F a polygonal region
α-β -γ coordinate system

∫
F

f (α , β , γ)dA =
1��n̂γ ��

∫
Π
f (α , β , h(α , β))dαdβ

n̂ surface normal
Π projection of F on α-β space wher e : h(α , β) = − 1

n̂γ

(
n̂αα + n̂β β +w

)
the plane in which the points lie : n̂αα + n̂β β + n̂γγ +w = 0

Green’s Theorem

Π - region in the plane
∂Π - single boundary∫

Π
+ · HdA =

∮
∂Π
H · m̂ds m̂ - exterior normal along the boundary.

H - any vector field on Π
Line integral transverses anti-clockwise

NICHOLAS POCHINKOV 7

Vertices Theorem
Le - length of the directed line segment from (αe , βe) to (αe+1 , βe+1), where (α (s), β (s)) gives the arc-length parameteriza-
tion of the line between two vertices (a distance s from the first one). For non-negative integers p and q:

∫ 1

0
α (Leλ)

p β (Leλ)
q dλ =

1

p + q + 1

p∑
i=0

q∑
j=0

(
p

i

) (
q

j

)
(
p + q

i + j

) α ie+1α
p−i
e β

j
e+1β

q−j
e (10)

α (s) and β (s) - the α- and β -coordinates of the point on this segment a distance s from the starting point.

Newell’sMethod
This describes a way of getting the normal to a plane of points making a shape counter-clockwise. The method of
calculating involves adding up the pair of points next to each-other as such:

®nx =
n−1∑
i=0

(yi − yi+1)(zi + zi+1) ®ny =
n−1∑
i=0

(zi − zi+1)(xi + xi+1) ®nz =
n−1∑
i=0

(xi − xi+1)(yi + yi+1) (11)

Then to find the unit normal vector, one simply normalizes the normal vector to havemagnitude 1 (which can be
donewith the integrated PVector.normalize(); function).

3 | PROGRESS TIMELINE
Week 1
I focused on using the 3D engine implemented in the Processing language and created a basic class uponwhich I would
build the rest of the project, named "Polygon". I also tested some of the coordinate-transfer systems already in the
language, however as these do not store the points other methods were used later.

Week 2
This week, I implemented the the Rotationmatrix R into the PMatrix3D class, As well as the angular velocity vector to
be able to produce a spinning effect of the body used. I then created a function that integrates the rotationmatrix using
the given angular velocity using themidpoint method. I then added a function to orthogonalize the rotationmatrix after
each step to avoid the object being deformed or oversized (which was achieved with Grahm-Shmidt orthogonalization)

Week 3
I implemented a force system into the tool that makes it such that the change in velocity, position, angular velocity,
rotationmatrix depended on a force bymass/tensor of inertia (for a cuboid), and the change was then integrated using a
combination of both themidpoint method and Euler method. The force function depended on the point in world space
and the force vector, which were both returned to body-space for ease of computation.

Week 4
Week 4, I began to implement code that allows the import of any custom 3D .obj file, which required slight modifications
to how other parts were processed. I also made code that sets the bounding box around the 3D object and sets the

8 NICHOLAS POCHINKOV

inertia tensor to the one for the bounding box for visual testing purposes, and tested it with a simple spring attached to
one of the vertices. This workedwell and I then gave a seminar explaining the work I had done so far.

Week 5
Week 5, I beganmaking a function to do integrals to get the Tensor of Inertia by themethod described in the paper by
BrianMirtich [3], as well using Newell’s method to find the normal to each face, and after a lot of debugging had finally
made it functional and results were in the range expected.

Week 6
In the final week, I improved the interactivity of the the tool by more easily allowing the adjustment of the size andmass
of the object, and also implemented a basic "poking" function that would apply a force on a point close on the object
where clicked. I alsomade this force adjustable, which further betters the experience. I also created some basic shapes
whose center of mass differed greatly from its bounding box to better show how the tensor of inertia affects rotation.

4 | CONCLUSION
In conclusion, the tool wasmade up to create an accurate simulation of the way objects interact with forces and how the
Tensor of Inertia affects rotation. I hope the tool is useful for those learning about physical simulations. The code will be
available for download as well as some sample object from :

pesvut .net soc .i e/r esear chP r oj ect2019.html

ACKNOWLEDGMENTS
I would like to give thanks tomy supervisor JohnDingliana for assistingmewith the knowledge to create this application.
I would also like to acknowledge the lecture notes of David Baraff [1] publicly available as a source of my knowledge on
the topic of Physically BasedModeling, and also to D. Kleppner and R. Kolenkow [2] for their book "An Introduction to
Mechanics" as a helpful source tomy knowledge of mechanics

REFERENCES
[1] D. Baraff, “," Physically BasedModeling, http://www.cs.cmu.edu/ baraff/sigcourse/index.html, 1999, pp. .
[2] R.J.K. Daniel Kleppner, An Introduction toMechanics, Cambridge University Press, 2010.
[3] B. Mirtich., Fast and accurate computation of polyhedral mass properties., J. Graph. Tools February 1996 (1996), 31–50.

